Google Scholar profile

Articles and preprints

* corresponding author

P. Fleig and V. Balasubramanian, “Playing it safe: information constrains collective betting strategies,”

P. Fleig and I. Nemenman, “Generative probabilistic matrix model of data with different low-dimensional linear latent structures,“ arXiv:2212.02987 [cond-mat].

P. Fleig* and I. Nemenman, “Statistical properties of large data sets with linear latent features,” Phys. Rev. E 106 (1), 014102, (Jul., 2022). arXiv:2111.04641 [cond-mat].

P. Fleig, M. Kramar, M. Wilczek and K. Alim, “Emergence of behaviour in a self-organized living matter network,” eLife 11 e62863 (Jan., 2022), doi:10.7554/eLife.62863.

M. Stern, C. de Mulatier, P. Fleig and V. Balasubramanian, “Curious exploration in complex environments based on Hopfield networks,” in IEEE International Conference on Robotics and Automation, Towards Curious Robots: Modern Approaches for Intrinsically-Motivated Intelligent Behavior, 2021.

P. Fleig, V. A. Belinski, “BKL oscillations in 2+1 space-time dimensions,” arXiv:1811.05208 [gr-qc]

A. Nagar, et al., “Time-domain effective-one-body gravitational waveforms for coalescing compact binaries with nonprecessing spins, tides and self-spin effects,” Phys. Rev. D 98 104052, (Nov., 2018). arXiv:1806.01772v1 [gr-qc]

P. Fleig and H. Nicolai, “Hidden Symmetries: from BKL to Kac-Moody,” in Proceedings, 13th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories (MG13), pp. 80–92. 2015.

P. Fleig, A. Kleinschmidt, and D. Persson, “Fourier expansions of Kac-Moody Eisenstein series and degenerate Whittaker vectors,” Communications in Number Theory and Physics 8 no. 1, (Dec., 2014) 41–100. arXiv:1312.3643 [hep-th]

P. Fleig and A. Kleinschmidt, “Perturbative terms of Kac-Moody-Eisenstein series,” in Proceedings, String-Math 2012 conference proceedings, R. Donagi, S. Katz, A. Klemm, and D. R. Morrison, eds., vol. 90 of Proceedings of Symposia in Pure Mathematics, pp. 265–276, AMS. AMS, Nov., 2015. arXiv:1211.5296 [hep-th]

P. Fleig and A. Kleinschmidt, “Eisenstein series for infinite-dimensional U-duality groups,” JHEP 1206 (2012) 054. arXiv:1204.3043 [hep-th]

P. Fleig, M. Koehn, and H. Nicolai, “On Fundamental Domains and Volumes of Hyperbolic Coxeter-Weyl Groups,” Letters in Mathematical Physics 100 (June, 2012) 261–278. arXiv:1103.3175 [math.RT]


P. Fleig, H. P. A. Gustafsson, A. Kleinschmidt, and D. Persson, “Eisenstein Series and Automorphic Representations with Applications in String Theory”. CUP, 2018.

Published in July 2018 by Cambridge University Press as part of the series Cambridge Studies in Advanced Mathematics and can be ordered here. Errata can be found here.

Parts of the book are available as preprint: P. Fleig, H. P. A. Gustafsson, A. Kleinschmidt, and D. Persson, “Eisenstein Series and Automorphic Representations,” arXiv:1511.04265 [math.NT]